A Public Health Perspective on Blue-Green Infrastructure

Prof Eugene Milne Director of Public Health Newcastle City Council

Health risks from floods in England

- Direct
 - trauma
 - infectious diseases

Indirect

- CO poisoning
- mental health
- displacement
- service/infrastructure disruption

Vulnerable groups

- age, disability, mobility
- tourists, migrants
- social isolation

FLOODS IN THE WHO EUROPEAN REGION: HEALTH EFFECTS AND THEIR PREVENTION

http://www.euro.who.int/en/what-we-publish/abstracts/floods-in-the-who-european-region-health-effects-and-their-prevention

National Study of Flooding and Health mental health outcomes: Y1

	EXPOSURE GROUP					
	Unaffected		Disrupted		Flooded	
Outcome	Prevalence	n	Prevalence	n	Prevalence	n
Likely depression	5.8%	16	9.6%	102	20.1%	125
Likely anxiety	6.5%	18	10.7%	113	28.3%	169
Likely PTSD	7.9%	22	15.2%	160	36.2%	214

Waite et al (2017). The English national cohort study of flooding and health: cross-sectional analysis of mental health outcomes at year one (BMC Public Health)

How access to green and open spaces can affect health

- A study in the Netherlands showed that every 10 per cent increase in exposure to green space translated into a reduction of five years in ["biological"] age in terms of expected health problems ([de Vries] et al 2003) with similar benefits found by studies in Canada (Villenveuve et al 2012) and Japan (Takano et al 2002).
- Green space has been linked with reduced levels of obesity in children and young people in America (Liu et al 2007). There is also strong evidence that access to open spaces and sports facilities is associated with higher levels of physical activity (Coombes et al 2010; Lee and Maheswaran 2010) and reductions in a number of long-term conditions such as heart disease, cancer, and musculoskeletal conditions (Department of Health 2012).
- The proportion of green and open space is linked to self-reported levels of health and mental health (Barton and Pretty 2010) for all ages and socioeconomic groups (Maas et al 2006), through improving companionship, sense of identity and belonging (Pinder et al 2009) and happiness (White 2013).
- Living in areas with green spaces is associated with significantly less incomerelated health inequality, weakening the effect of deprivation on health (Mitchell and Popham 2008). In greener areas, all-cause mortality rates are only 43 per cent higher for deprived groups, compared to 93 per cent higher in less green areas.
- However, people from more deprived areas have less access; children in deprived areas are nine times less likely to have access to green space and places to play (National Children's Bureau 2013).

0.1i – Healthy life expectancy at birth (Male) – Newcastle upon Tyne

Individual based	Population based				
Identify individuals at high risk: scree	ening Identify important risk factor	s for the community	(prevalence)		
Risk–benefit balance individually sse	ssed Risk-benefit balance for who	Risk-benefit balance for whole community			
	Individual intervention	Population into	ervention		
Individuals identified Potential benefits for individual Potential benefits for population Understanding of effects	Yes Large Small Good	No Small Large Poor			
		ros PF M	e's strategy of EVENTIVE EDICINE		
From the Commentary on Ro – Kay-Tee Khaw and Michael	edicine GEO WITH COM KAY-TEE	FFREY ROSE MENTARY BY KHAW & MICHAEL MARMOT			

Hakim AA, Petrovitch H, Burchfiel CM, et al. (1998) Effects of Walking on Mortality among Nonsmoking Retired Men. N Engl J Med 338:94–99. doi: 10.1097/00042752-199807000-00022

Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study

James F Sallis, Ester Cerin, Terry L Conway, Marc A Adams, Lawrence D Frank, Michael Pratt, Deborah Salvo, Jasper Schipperijn, Graham Smith, Kelli L Cain, Rachel Davey, Jacqueline Kerr, Poh-Chin Lai, Josef Mitáš, Rodrigo Reis, Olga L Sarmiento, Grant Schofield, Jens Troelsen, Delfien Van Dyck, Ilse De Bourdeaudhuij, Neville Owen

Results Four of six environmental attributes were significantly, positively, and linearly related to physical activity in the single variable models: net residential density (exp[b] 1.006 [95% CI 1.003-1.009]; p=0.001), intersection density (1.069 [1.011-1.130]; p=0.019), public transport density (1.037 [1.018-1.056]; p=0.0007), and number of parks (1.146 [1.033-1.272]; p=0.010). Mixed land use and distance to nearest public transport point were not related to physical activity. The difference in physical activity between participants living in the most and least activity-friendly neighbourhoods ranged from 68 min/week to 89 min/week, which represents 45–59% of the 150 min/week recommended by guidelines.

Decent neighbourhoods

Source: Appleyard (1981)

TABLE 1	England: baseline population,	modelled population-weighted n	nean concentrations (µg m ^{−3}) and
estimated	effects on annual mortality in	2010 of anthropogenic PM _{2.5} air	pollution	-

Area	Population age 25+ (x 10 ³)	Deaths age 25+	Mean anthropogenic PM₂.₅ (µg m ^{−3})*	Attributable fraction [†] (%)	Attributable deaths [‡] age 25+	Associated life-years lost [§]
ENGLAND	35878.0	458743	9.9	5.6	25002	264749
NORTH EAST	1795.3	26090	8.1	4.6	1199	12336
County Durham UA	355.3	5231	7.5	4.3	223	2268
Darlington UA	70.6	1044	8.0	4.5	47	481
Hartlepool UA	62.3	920	8.3	4.7	43	451
Middlesbrough UA	91.4	1363	8.8	5.0	68	695
Northumberland UA	227.0	3254	6.9	3.9	128	1284
Redcar and Cleveland UA	96.9	1368	7.8	4.5	61	664
Stockton-on-Tees UA	131.0	1662	8.2	4.6	77	872
Tyne and Wear (Met C)						
Gateshoad	125.2	2021	9.6	10	00	062
Newcastle upon Tyne	180.6	2553	8.6	4.9	124	1320
North Tyneside	141.5	2112	8.4	4.8	101	998
South Tyneside	107.4	1675	8.8	5.0	84	864
Sunderland	196.1	2874	8.7	5.0	143	1477

Gowers AM, Miller BG, Stedman JR (2014) Estimating Local Mortality Burdens associated with Particulate Air Pollution. London

Environmental Pollution 178 (2013) 395-402

Modeled PM_{2.5} removal by trees in ten U.S. cities and associated health effects

David J. Nowak^{a,*}, Satoshi Hirabayashi^b, Allison Bodine^b, Robert Hoehn^a

^a USDA Forest Service, 5 Moon Library, SUNY-ESF, Syracuse, NY 13210, USA ^bDavey Institute, 5 Moon Library, SUNY-ESF, Syracuse, NY 13210, USA

ARTICLE INFO

ABSTRACT

Article history: Received 5 November 2012 Received in revised form 23 March 2013 Accepted 25 March 2013

Keywords: Urban forests Air pollution removal Particulate matter Mortality Human health Urban particulate air pollution is a serious health issue. Trees within cities can remove fine particles from the atmosphere and consequently improve air quality and human health. Tree effects on PM₂₅ concentrations and human health are modeled for 10 U.S. cities. The total amount of PM₂₅ removed annually by trees varied from 4.7 tonnes in Syracuse to 64.5 tonnes in Atlanta, with annual values varying from S11 million in Syracuse to 56.01 million in 1 new York (city, Most of these values were from the effects of reducing human mortality. Mortality reductions were typically around 1 person y⁻¹ per city, but were as high as 7.6 people yr⁻¹ in New York (City, Average annual percent air quality improvement ranged between 0.055 in San Francisco and 0.24% in Atlanta. Understanding the impact of urban trees on air quality can lead to improved urban forest management strategies to sustain human health in cities. Published by Elsevier Ltd.

CrossMark

=

Garden Village The Story of a Community

From this:

To this:

Children in England 'among unhappiest in world'

() 19 August 2015 Education & Family

Children in England are among the unhappiest in the world, behind countries such as Ethiopia, Algeria and Romania, research suggests.

The Children's Society report, which looked at 15 diverse countries, ranked England 14th for life satisfaction of its young people, ahead of South Korea.

INDEPENDENT News Voices Culture Lifestyle Tech Sport Daily Edition Charity Appeal

THE NEW BIGGER MINI COUNTRYMAN.

ADD FRIENDS. ADD EXPLORING. ADD STORIES.

News > Education > Education News

The anxiety epidemic: Why are children so unhappy?

Education Editor, Richard Garner | Tuesday 11 March 2008 00:00 GMT | 💭 0 comments

26

Teachers are to take the extraordinary step of calling for an independent Royal Commission to investigate why so many of Britain's children are unhappy.

FLike

Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood

Fig. 1. The association between childhood green space presence and the relative risk of developing a psychiatric disorder later in life. Green space presence was measured as the mean NDVI within a 210×210 m square around place of residence (n = 943,027). Low values of NDVI indicate sparse vegetation, and high values indicate dense vegetation. Relative risk estimates are relative to the reference level (set to the highest decile) for NDVI fitted as numeric deciles in classes of 10. Estimates above the dashed line indicate higher risk of developing a given psychiatric disorder for children living at the lowest compared with the highest values of NDVI. Three additional models were fitted to adjust for the effect of urbanization, parental and municipal socioeconomic factors, parental history of mental illness, and parental age at birth on risk estimates. All estimates were adjusted for age, year of birth, and gender and plotted with 95% Cls.

Engemann, K., Pedersen, C. B., Arge, L., Tsirogiannis, C., Mortensen, P. B., & Svenning, J.-C. (2019). Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. *Proceedings of the National Academy of Sciences*. Retrieved from https://www.pnas.org/content/early/2019/02/26/1807504116

Thank you for listening Any questions?